

An NSF PAWR Platform

POWDER-RENEW:

A Shared Software-defined massive mimo testbed

RAHMAN DOOST-MOHAMMADY ELECTRICAL & COMPUTER ENG. RICE UNIVERSITY

TEXAS SOUTHERN UNIVERSITY

Theory \rightarrow Experiment Example

Rice Argos vI

• Experimental results validated theory and showed technology is *feasible*!

Experiment \rightarrow Theory Example

Achieving Single Channel, Full Duplex Wireless Communication

Jung II Choi[†], Mayank Jain[†], Kannan Srinivasan[†], Philip Levis, Sachin Katti Stanford University California, USA

{jungilchoi,mayjain,srikank}@stanford.edu, pal@cs.stanford.edu, skatti@stanford.edu [†]Co-primary authors

Full-Duplex Wireless Communications Using Off-The-Shelf Radios: Feasibility and First Results

Melissa Duarte and Ashutosh Sabharwal Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005 Email: {mduarte, ashu}@rice.edu

Two Experimental Demonstrations in 2010 (People paid attention because of experimental evidence)

Open-Source Unleashed Innovation!

Experimental research accelerated by **open-source** stacks running on cheap hardware

Replicable & Reproducible Experiments - Hard Today!

SDRs improved the overall access

- Experiments became possible and led to many good work
- × Replicability incremental research hardly possible!
- × Reproducibility many setup-dependent results or not applicable in the field

Real need for **open experimentation** on **shared at-scale** testbeds

Experiments on At-Scale Testbeds

ArgosNet: Massive MIMO Field Deployment

- World's first base-station class 3.5 GHz SDR testbed
- World's first multi-cell testbed for massive MU-MIMO

Opportunity with Shared Testbeds

POWDER – RENEW

POWDER: Platform for Open Wireless Data-driven Experimental Research **RENEW**: Reconfigurable Ecosystem for Next-gen End-to-end Wireless

powderwireless.net

renew.rice.edu

8

Open Experiments Vision

RENEW Open-source mMIMO Stacks

POWDER: Shared Research Infrastructure

- Experiment Profile: Specific set of hardware resources and code <u>share a</u> profile to share an experiment
- Replicability: Statistical repeatability feasible <u>use the same wireless nodes</u> to validate experimental results
- **Reproducibility:** Test on different experiment setups, i.e. base stations/clients, etc

Replicable & Reproducible Experiments – Straightforward Soon!

POWDER@University of Utah: Large-scale SDR Deployment

POWDER Deployment Scenarios

UofU Shuttle deployments for observable mobility

Cell overlap for CoMP

POWDER: Planned Spectrum Coverage

Range (MHz)	
698-806	Commercial/Public Safety
902-928	Industrial, scientific and medical (ISM)
1710-1755	Extended Advanced Wireless Services (EAWS) uplink
2110-2155	Extended Advanced Wireless Services (EAWS) downlink
3550-3650	Citizens Broadband Service (CBRS)
5150-5925	Unlicensed National Information Infrastructure (U-NII)

- Broad range of frequencies, sub-6GHz focus
- Program license streamlines spectrum licensing
- Experiment Isolation Mechanisms

FAROS: Software-defined Massive MIMO Base-stations

- 64-96 Antennas
- UHF, 2.5 and 3.5GHz Configurations
- 4x 10G Ethernet Backhaul
- SyncE and PTP-like support
- Compact, Remotely monitored

Commercially available from Skylark Wireless (Rice spin-off)

RENEW Design Flows

- Multiple Experimentation Design Flows inc. MATLAB
- Channel Measurement Framework

- Firmware Built-in Features
 - Flexible Framing
 - Over-the-Air Sync
 - Power Control
 - AGC

Research Example I: FDD Massive MIMO

dominant angles << # antennas (channel low-dim in angle space)
Uplink/downlink channel angle correlation is high

"Directional Training for FDD Massive MIMO", X. Zhang, et al., IEEE Trans. On Wireless Comm., 2018.

Research Example II: Full Duplex Massive MIMO

• Remove the Need for Analog Cancellation with TX beamforming

More Possible Experiments on POWDER with RENEW Development

RENEW Team (Rice, UMich, TSU)

Ashu Sabharwal

Wei Li

Lin Zhong

Xuemin Chen

Edward Knightly

Rahman Doost-Mohammady

Joe Cavallaro

Oscar Bejarano

Morley Mao

C. Nicolas Barati

Thank You!

renew.rice.edu powderwireless.net

